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Biomathematical Model

* A system of mathematical equations or
computer simulations that provides a
quantitative picture of how a complex
biological system functions under
healthy and diseased conditions.

« Computational models use numerical
methods to examine mathematical
equations or systems of equations too
complex for analytical solution.



Advantages of the
Modeling Approach

« Concise summary of present knowledge of
operation of a particular system

* Predict outcomes of modes of operation not
easily studied experimentally in a living system

* Provide diagnostic tools to test theories about
the site of suspected pathology or effect of
drug treatment

 Clarify / simplify complex experimental data

* Suggest new experiments to advance
understanding of a system



Limitations of the
Modeling Approach

* Models often require many simplifying
assumptions

— garbage in, garbage out

» Validation of model predictions is essential

— examination of behavior under known limiting
conditions

— experimental validation

— limits of model point out what we don't
understand



Perspectives to Keep in Mind

“What we observe is not
nature in itself but nature
exposed to our method of
questioning.” W. Heisenberg

“Any model is only ever
a model--experiments
are the truth!” s.w. covel




Forward Model

* A detailed mathematical model designed to
incorporate a desired level of anatomic,
physical, or physiologic features

— Can have arbitrary complexity as desired
— Parameter values often obtained from published literature
— Ex: cardiac electromechanical coupling, cell signaling networks

« Used for simulating realistic experimental data under
precisely defined conditions to test hypotheses in silico

« Can help design better experiments and reduce animal use
« Generally too complicated for fitting to experimental data

» Allows generation of synthetic data sets with prescribed
noise characteristics (Monte Carlo simulation) for evaluating
parameters obtained by inverse modeling



Inverse Model

* A mathematical model designed to fit experimental data
so as to explicitly quantify physical or physiological
parameters of interest

« Values of model elements are obtained using parameter

estimation techniques aimed at providing a “best fit" to
the data

« Generally involves an iterative process to minimize the
average difference between the model and the data

« Evaluating the quality of an inverse model involves a
combination of established mathematical techniques as
well as intuition and creative insight



Forward-Inverse Modeling

* A process of combined data simulation and
model fitting used for evaluating the robustness,
uniqueness, and sensitivity of parameters
obtained from an inverse model of interest.

* A powerful tool for improving data analysis and
understanding the limitations on model
parameters used for system characterization and
distinguishing normal from abnormal
populations.



Characteristics of a
Good Inverse Model

* Fit is good—model should be able to adequately
describe a relatively noise-free data set (of
course a poor fit provides some insight also).

 Model parameters are unique
— Theoretically identifiable for noise-free data

— Well-determined model parameters in presence of
measurement noise

« Values of parameter estimates are consistent
with hypothesized physical/physiologic
meanings and change appropriately in response
to alterations in the physiologic system.



Steps for Inverse-Modeling
of Data

1. Select an appropriate mathematical model
» Polynomial or other functional form
« Based on underlying theory

2. Define a “figure of merit” function

« Measures agreement between data & model for given
parameters

3. Adjust model parameters to get a “best fit”
 Often involves minimizing the figure of merit function

4. Evaluate “goodness of fit” to data
* Never perfect due to measurement noise

5. Estimate accuracy of best-fit parameter values
* Provide confidence limits and determine uniqueness

6. Determine whether a much better fit is possible
* Tricky due to possible local minima vs global minimum
 F-test for comparing models of different complexity



Selecting the Model

* “Trend lines”

— Polynomials are often used when a data set seems
to follow a mathematical trend but the governing
formula is not known

* Physically-based equations

— Given knowledge of a governing physical process,
the desired model is derived from the underlying
theoretical equations

— Resulting model parameters have a specific
physical interpretation



Least-Squares A

« e : y R =
Error Minimization Pk
I e data (x,Y;)
s x model (xi,yiz
Goal is to fit N data points (x;, y;) i=1..N X
The model is a function with M adjustable y, =y(x,,a,.4,)

parameters (degrees of freedom) a,, k=1..M
used to generate N model points (x;, V)

The residual measures the difference A
between a data point and the Y= Y(x,,a,.a,)
corresponding model estimate

Since residuals can be positive or negative, < .
a sum of residuals is not a good measure E[y,- —Y(x;.a-ay )]
of overall error in the fit =1

A better measure is the sum of squared N A :
residuals, E, which is only zero if every E = E[y,- - y(x;,q,.q,)]
residual is zero i1



Maximum Likelihood Estimation

* Not meaningful to ask “What is the probability
that my set of model parameters is correct?”
— Only one correct parameter set—Mother Nature!

« Better to ask "Given my set of model
parameters, what is the probabillity that this data
set occurred?”

— What is the likelihood of the parameters given the
data?

 Inverse modeling is also known as “maximum
likelihood estimation”.




The Chi-Square Error Measure and
Maximum Likelihood Estimation

For Gaussian distribution of measurement
noise with varying standard deviation, o,
the probability of the data set coming from
the model parameters is given by

Maximizing this probability involves
maximizing In(Pfor minimizing —In(P),
yielding the chi-square function of
weighted residuals

— the “weight” is the inverse of the variance
of each measurement (w, = 6,?)

— Other functions may be useful for non-
Gaussian measurement noise, yielding so-
called “robust estimation” methods

If variance is assumed to be uniform, then
let o = constant = 1, and chi-square
function yields the sum of squared
residuals function defined earlier
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Minimizing Chi-Square

« Since the error in the model fit depends on the model
parameters, a,, minimizing the chi-square function requires
finding where the derivatives are zero

) [y, = y(x))°
£ =.E on
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0y (X)) _ . b1 m
oa, |

00C) __zz(bz, €N

da, o’
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« This yields a general set of M (nonlinear) equations for the
M unknowns a,

- The model derivatives dy/da, are often known exactly, or
may be approximated numerlcally using finite differences



Linear Regression Analysis

Consider a set of measurements of
photodetector voltage (dependent
variable) as a function of incident
laser intensity (independent

variable).

We propose to examine a linear
relationship between voltage (y) and

intensity

data
data

model

We need to find the best set of
values of a and b to fit the data.

(x). .

X =
y_
y_

y=a+ bx

1 X15 Xoy vny X,
Y1,y2a cs Yol
Y1’Y2a : -,9n:

Voltage [V]

Intensity [GmW]

Define the least-squares error
norm defining the “goodness” of
the linear fit. Adjust model
parameters a and b to minimize

this error.

N

E(a.b) = Y[y ~(a+bx)]

i=1



Computing Model Parameters
for Linear Regression

« We can determine the best values of - 2
a and b by calculating the partial E(a,b) = Z[y —~(a+ bx,)]
derivatives of E w.r.t. a and b, and

setting these to zero. This yields 2 oad) o, Eab_,
equations to be solved for the 2 a b
unknowns a and b, yielding: B Sx,y, —nXy .
S - (T Y

« Standard error of the estimate
approximates standard deviation of n-1_, .,
population about mean at a given Sey = \/n_z(sy ~)
value of the independent variable .

« Standard error of slope and © Yn o (n-Ds;
intercept used for t test of a,b = 0 or 1 s,
to place confidence intervals L 5




Regression versus Correlation

 Correlation coefficient describes

- g 2(x.—x)(y. =Yy
the strength of the association s A _xz)(zy’ 2 ;
between the two variables (% =37 20:=3)

r — +1 if they increase together >
r — -1 if one decreases as other increases _ | =25,
r — 0 if they do not relate to one another \ n-1) s>

* The correlation coefficient can be
related to results of the regression

* Unlike the regression parameters,
a and b, the correlation ,_ Exy, -n¥y
coefficient, r, is symmetric in x T3 —n(x)
and y and therefore does not L
require choosing of independent a=y-bx

and dependent variables



Linearization of Nonlinear Models

_ . V=V o]
« Many nonlinear equations can be K +[S]

“linearized” by selecting a suitable A
change of variables

 Historically this has been a common
approach in analysis of scientific data, !
mainly due to ease of implementation Igand concentration

« However, “linearization” often distorts

bt
s
e p—t T

activity

the error structure, violates key I_Kk, 1 + I
assumptions, and impacts resulting Vi Vi 81 Vi
model parameter values, which may B
lead to incorrect conclusions :

« In our modern era of computers it is 2| g
usually wisest to perform nonlinear ——

least squares analysis when using

non“near Inverse mOdeIS adapted from Lobemeier, 2000



General Model Fitting

* |tis important to understand where these regression
equations come from, but this is rarely done by hand.

* Microsoft Excel has several trend-line functions built
In, including nonlinear models which follow the same

idea but cannot be solved analytically.

« Often in biomedical experiments, a data set is
governed by a system of equations determined by
underlying physical principles rather than just the

shape of the curve.



Nonlinear Model Fitting

The selected model y is a nonlinear

function of model parameters a,, k=1..M Yi = y(x;)
The %2 merit function is (@) = i [y, - $(x,.a)]
2
The gradients of x? with respect to i1 of
model parameters a, must approach 2 A
zero at minimum 32 ox") _ _22 Ly; = Y(xl,a)] Iy(x;.a)
da, o’ da,

However, because the gradients are
nonlinear functions of a, minimization
must proceed iteratively updating a until
w2 stops decreasing.

In the steepest descent method, the
constant, A, must be small enough not A, = Aren = 2 X VX (@ )
to exhaust the downhill direction.

Alternative numerical methods include the inverse-Hessian method, the
popular hybrid Levenberg-Marquardt method, and the robust but
complex full Newton-type methods.



Global Error Minimization

« The error function depends on
model parameters a,, and can
be thought of as an M-
dimensional “surface” of which
we seek the minimum

« Depending on the complexity
of the model (i.e. the number
of model degrees of freedom,
M) the error surface may be
quite “bumpy”

« Achallenge is to ensure that a given set of “optimal”
model parameters represents the true global minimum of
the error surface, and not a local minimum

* This can be tested by varying the initial guesses and
comparing the resulting model parameters



Implementation in Matlab

function KDC_optimization

global known;

filename = input('Enter the name of file: ','s');
data = dlmread(filename);

X _data = data(:,1);

y data = data(:,2);

known = 10; % Assign known model parameters

guess = [.1 .1 1 1]; % Guess initial wvalues

[optimum,resnorm] = lsgnonlin(@model,guess,LB,UB,options,x data,y_data) _
y_model=model (optimum,x data); % Generate vector of simulated data

plot(x_data,y data, 'bx',x data,y model, 'r-');
xlabel('Independent Variable (***)');
ylabel( 'Dependent Variable (***)');

function y=model(a,x)
global known;
y=a(l)+a(2)*x."2+a(3).*sin(a(4).*x) - known; % May depend on known variables



Goodness of Fit and the
Residuals Plot

« The correlation coefficient (R?) is .., modelfii . :uze;BreSIduaIS
often used to characterize the {7/ .- " .
goodness of fit between model o .-
and data. e e e

* A high correlation can exist even ayp
for a model that systematically ;.| S
differs from the data. fnl Sos [T

« One must also examine the LI R I )
distribution of residuals--a good | e .
model fit should yield residuals ~ © 1 s R L
equally distributed along x and el RO
normally distributed around zero o e e 0w

with no systematic trends
adapted from Lobemeier, 2000



model 1

Comparing Two Model Fits

 The number of data points, N, must exceed >

X
the number of model parameters, M,
yielding the degrees of freedom (DOF = N-M)

* Increasing the number of model
parameters, M, will generally improve the
quality of fit and reduce 2

M<N -1

X _ X

N-M DOF

« The mean squared error can be used to MSE =
compare two models fit to a given data set

* Increasing MSE with decreasing %2 can
reveal an over-parameterized model

» An F-statistic can be computed for the ~
. (}{szimple )éomplex )
results of two model fits. (DOF
— F~1, the simpler model is adequate F = S"m”;%
— F > 1, the more complex model is better, or - Leomplex

random error led to a better fit with the DOF,,, .
complex model

— P-value defines the probability of such a
“false positive” result

- DOF,

complex )




Table 2-1 Critical Values of F Corresponding to P < .05 (Lightface) and P < .01 (Boldface)
Vn
vy 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 o
1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248 249 250 251 252 253 253 254 254 254
4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6082 6106 6142 6169 6208 6234 6261 6286 6302 6323 6334 6352 6361 6366
2 1851 1900 19.16 1925 1930 1933 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1947 1948 1949 1949 1950 1950
98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.41 99.42 9943 99.44 99.45 9946 99.47 99.48 99.48 99.49 99.43 99.43 99.50 99.50
3 10:13 9.55 9.28 9.12 9.01 894 8388 8.84 8.81 8.78 876 8.74 8.71 8.69 8.66 8.64 8.62 8.60 8.58 857 8.56 854 854 8.53
34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 26.92 26.83 26.69 26.60 26.50 26.41 26.35 26.27 26.23 26.18 26.14 26.12
4 774 6.94 6.59 6.39 6.26 616 609 6.04 6.00 596 593 591 5.87 584 580 577 - 5:74 5.71 5:70% 5:68 5.66 565 b5.64 5.63
21.20 18.00 16.69 15.98 1552 15.21 1498 14.80 14.66 1454 14.45 1437 1424 1415 1402 13.93 13.83 13.74 13.69 13.61 1357 13.52 13.48 13.46
5 6.61 5.79 5.41 5.19 5.05 495 4.88 4.82 478 474 470 468 4.64 460 456 453 450 4.46 444 442 4.40 438 437 4.36
16.26 13.27 12.06 11.39 10.97 10.67 1045 10.29 10.15 10.05 9.96 9.89 9.77 9.68 9.55 9.47 9.38 9.29 9.24 9.17 9.13 9.07 9.04 9.02
6 599 514 476 453 439 428 421 4.15 410 4.06 403 4.00 3.96 392, 387 3.84 3.81 3.77 Bl AP 371 3.69 368 3.67
13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 798 7.87 A9 7I2 7.60 7.52 7.39 7.31 7:23 7.14 7.09 7.02 6.99 6.94 6.90 6.88
i 5.59 474 4.35 412 3.97 3.87 3.79 3.73 368 3.63 3.60 . .. 367 3.52 349 344 3.41 3.38 3.34 332 329 3.28 3.25 3.24 3.23
1225 955 8.45 7.85 7.46 748  7.00 6.84 6.71 6.62 6.54 6.47 6.35 6.27 6.15 6.07 5.98 5.90 585 5.78 5.75 570 5.67 5.65
8 532 446 4.07 384 3.69 358 - 350 3.44 339 334 331 3.28 323 TP - 35 3.12 ¢ -3:08 3.05 3.03 3.00 298 296 294 293
11.26 8.65 7.59 7.01 6.63 637 619 6.03 5.91 5.82 574 5867 5.56 548 5.36 528 5.20 5.11 5.06 5.00 4.96 491 4.88 4.86
g 512 5476 3.86 3.63 348 337 3.29 3.23 318 313 3407 13107 3.02 298 293 290 286 282 280 2977 276 2935 272 2:74
10.56 8.02 6.99 6.42 6.06 580 5.62 5.47 .35 5.26 5.18 5.11 5.00 492 480 473 464 456 4.51 4.45 4.41 436 433 4.31
10 496 4.10 3.1 348 333 322 314 3.07 302 297 294 291 2.86 282 2797 294, 270 2.67 264 261 2.59 256 255 2.54
10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 495 485 478 4.71 4.60 452 441 433 4.25 4.17 412 4.05 4.01 396 3.93 3.91
i 484 398 3.59 39867 - :3:20 3.09 3.01 2.95 280 286 282 279 274 270 2865 2.61 257 253 250 - 247 2.45 242 2:49 240
9.65 7.20 622 567 532 5.07 4.88 474 463 454 446 4.40 4.29 4.21 4.10 402 394 3.86 3.80 374 3.70 3.66 3.62 3.60
12475 =3.88 3.49 326 3011 300 292 2.85 280 276 272 269 2.64 260 254 250 246 242 2:40-- :2:36 235 2:32 - 231 2.30
9.33 6.93 5.95 5.41 5.06 482 4.65 4.50 439 430 422 416 4.05 398 386 318 -~ 3.8 3.61 3.56 349 3.46 3.41 3.38 3.36
137 487 =380 3.41 348  .3.02 292 284 277 272 267 263 260 2.55 251 2.46 2:42. 238 234 2:320 2.28 2.26 224 222 221
9.07 6.70 5.74 520 4.86 462 444 4.30 419 4.10 402 3.96 3.85 3.78 3.67 3.59 351 3.42 337 .. 330 327 3.21 3.18 3.16
4 460 2374 334 371 2.96 2:85 247 2.70 265 260 256 253 2.48 244 239 235~ 231 227 224. 221 2.19 2.16- 214 213
8.86 6.51 5.56 503 469 446 4.28 4.14 403 394 3.86 3.80 370 362 351 343 334 3.26 3.21 3.14 3.11 3.06 302 3.00
15 454 368 3.29 3.06 290 279 270 2.64 259 255 2.51 2.48 2.43 238 233 229 225 221 218 215 2512 2.10 2.08 2.07
8.68 6.36 5.42 483 4.56 432 414 4.00 3.89 3.80 373 . 367 3.56 348 3.36 329 3.20 3.12 3.07 3.00 2.97 292 289 2.87



Accuracy of Estimated
Model Parameters *“

XZ fitted

Underlying true set of
model parameters, a,., irue parameters

are known to Mother
Nature but hidden from

the experimenter
True parameters are statistically
realized, along with measurement

errors, as the measured data set D,

Fitting D, using % minimization yields the estimated model
parameters a,

Other experiments could have resulted in data sets D4, Dy,
etc. which would have yielded model parameters a,), a,), etc.

We wish to estimate the probability distribution of a; - a;,
without knowing a,, , and without an infinite number of
hypothetical data sets. Hmmmm...



Monte Carlo Simulation of o
ata set min )
Dy o
Synthetic Data Sets
:ly?thettic" L a(25)
actual x> | fitted Da
data set mii parameters
a9
synthetic 29
* Assume that if ay is a reasonable estimate of Pt "
ae: then the distribution of a;-a, should be
similar to that of a(i)-atrue 3};1;1;2?04 |, aQ
L4 DS(4)

With the assumed a ), and some understanding of
the characteristics of the measurement noise, we can
generate “synthetic data sets™ D° ), TF,),... at the
same X, values as the actual data set, D(O), have the
same relationship to a, as D, has to ay,.

10,000 Monte Carlo Trials

iducial Value

Energy of the Proxima-Alpha Orbit
—>

For each 1, perform a model fit to obtain

corresponding a%;, yielding one point as- aq, for B Wi sinaltiningh

simulating the desired M-dimensional probability N

distribution. This is a very powerful technique!! E[yi _ 9(%3(0))]2
« Note: if 6 are not known, can estimate after fit g’ ==L

and use randn function in Matlab N-M



The Bootstrap Method

 If you don’t know enough about the measurement errors
(i.e. cannot even say they are normally distributed) then
Monte Carlo simulation cannot be used.

* Bootstrap Method uses actual data set D, with its N data
points, to generate synthetic data sets T° 4y, 1°,),... also
with N data points.

* Randomly select N data points from D, with replacement,
which makes D5 differ from D, with a fraction of the
original points replaced by duplicated original points.

« The %? merit function does not depend on the order of (x.y.),
so fitting the 1, data yields model parameter sets a°; as
with Monte Carlo, except using actual measurement noise.



Confidence Intervals and
Accuracy of Model Parameters

e * *  _— 08% confidence region
S O
* 1 R on a; and a; jointly
(4 .

N
0
RN
(o]

Eh
%

ence interval on @)

o
(s)

i~ %on

In MatLab: y=prctile(x,[5 95])

The probability distribution is a
function defined on M-dimen-
sional space of parameters a.

A confidence interval is a
region that contains a high
percentage of the total
distribution relative to model
parameters of interest.

You choose the confidence
level (e.g. 68.3%, 90%, etc.)
and the region shape.

— e.g. lines, ellipses, ellipsoids

You want a region that is
compact and reasonably
centered on ag,.



Validating Physical Interpretation of
Model Parameters

* Physical sensibility
— Chemical rate constant cannot be negative
— Poisson’s ratio cannot exceed 0.5

— Can enforce lower and upper bounds on parameters, but should
examine closely if these end up “optimal”

* Independent measurements of key physical quantities
— Comparison with published values or limiting behavior
— Measure steady state modulus of viscoelastic material

« Experimentally alter specific parameters, collect data, and
examine results of model fit
— May involve building a physical model for testing

« Compare model fitting results using data from normal and
abnormal populations
— In asthma patients, airway resistance should be higher than normal



Assignment

B lymphocytes in the immune response

www.EnCognitive.com

DeBroe, Kidney Int, 2006
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Assignment

 ODE model of BrdU labeling to estimate proliferation p
and death rates of B cells. m

U — number of unlabeled B cells
L — number of BrdU labeled B cells

p — rate of proliferation (per hour) P

d — rate of death (per hour)

s — rate of cell inflow from source (cells/hr) S d
MRS U ——

» Given experimental data on fraction of total B cells
labeled with BrdU versus time, develop a model to
fit the data, estimate values of p, s, and d, and
evaluate the model performance.

Steven Kleinstein and Uri Hershberg



Resources

 Numerical Recipes online
www.nr.com/nronline_switcher.html

« Matlab online help
www.mathworks.com/access/helpdesk/help/techdoc/
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