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Biomathematical Model 
•  A system of mathematical equations or 

computer simulations that provides a 
quantitative picture of how a complex 
biological system functions under 
healthy and diseased conditions. 

•  Computational models use numerical 
methods to examine mathematical 
equations or systems of equations too 
complex for analytical solution. 



Advantages of the  
Modeling Approach 

•  Concise summary of present knowledge of 
operation of a particular system 

•  Predict outcomes of modes of operation not 
easily studied experimentally in a living system 

•  Provide diagnostic tools to test theories about 
the site of suspected pathology or effect of 
drug treatment 

•  Clarify / simplify complex experimental data 
•  Suggest new experiments to advance 

understanding of a system 



Limitations of the  
Modeling Approach 

•  Models often require many simplifying 
assumptions 
– garbage in, garbage out 

•  Validation of model predictions is essential 
– examination of behavior under known limiting 

conditions 
– experimental validation 
–  limits of model point out what we don’t 

understand 



Perspectives to Keep in Mind 
 “What we observe is not 
nature in itself but nature 
exposed to our method of 
questioning.” W. Heisenberg 

 “Any model is only ever 
a model--experiments 
are the truth!” J.W. Covell 



Forward Model 

–  Parameter values often obtained from published literature 
–  Ex: cardiac electromechanical coupling, cell signaling networks 

•  Used for simulating realistic experimental data under 
precisely defined conditions to test hypotheses in silico 

•  Can help design better experiments and reduce animal use 

•  Generally too complicated for fitting to experimental data 

•  Allows generation of synthetic data sets with prescribed 
noise characteristics (Monte Carlo simulation) for evaluating 
parameters obtained by inverse modeling 

•  A detailed mathematical model designed to 
incorporate a desired level of anatomic, 
physical, or physiologic features 
–  Can have arbitrary complexity as desired  Potse and Vinet, 2008 



Inverse Model 
•  A mathematical model designed to fit experimental data 

so as to explicitly quantify physical or physiological 
parameters of interest 

•  Values of model elements are obtained using parameter 
estimation techniques aimed at providing a “best fit” to 
the data 

•  Generally involves an iterative process to minimize the 
average difference between the model and the data 

•  Evaluating the quality of an inverse model involves a 
combination of established mathematical techniques as 
well as intuition and creative insight  



Forward-Inverse Modeling 
•  A process of combined data simulation and 

model fitting used for evaluating the robustness, 
uniqueness, and sensitivity of parameters 
obtained from an inverse model of interest. 

•  A powerful tool for improving data analysis and 
understanding the limitations on model 
parameters used for system characterization and 
distinguishing normal from abnormal 
populations. 



Characteristics of a  
Good Inverse Model 

•  Fit is good—model should be able to adequately 
describe a relatively noise-free data set (of 
course a poor fit provides some insight also). 

•  Model parameters are unique 
–  Theoretically identifiable for noise-free data 
–  Well-determined model parameters in presence of 

measurement noise 

•  Values of parameter estimates are consistent 
with hypothesized physical/physiologic 
meanings and change appropriately in response 
to alterations in the physiologic system. 



Steps for Inverse-Modeling  
of Data 

1.  Select an appropriate mathematical model 
•  Polynomial or other functional form 
•  Based on underlying theory 

2.  Define a “figure of merit” function 
•  Measures agreement between data & model for given 

parameters 

3.  Adjust model parameters to get a “best fit” 
•  Often involves minimizing the figure of merit function 

4.  Evaluate “goodness of fit” to data 
•  Never perfect due to measurement noise 

5.  Estimate accuracy of best-fit parameter values 
•  Provide confidence limits and determine uniqueness 

6.  Determine whether a much better fit is possible 
•  Tricky due to possible local minima vs global minimum 
•  F-test for comparing models of different complexity 



Selecting the Model 

•  “Trend lines” 
–  Polynomials are often used when a data set seems 

to follow a mathematical trend but the governing 
formula is not known 

•  Physically-based equations 
–  Given knowledge of a governing physical process, 

the desired model is derived from the underlying 
theoretical equations 

–  Resulting model parameters have a specific 
physical interpretation 



Least-Squares  
Error Minimization 

•  Goal is to fit N data points (xi, yi) i=1..N 

•  The model is a function with M adjustable 
parameters (degrees of freedom) ak, k=1..M 
used to generate N model points (xi, ŷi) 

•  The residual measures the difference 
between a data point and  the 
corresponding model estimate 

•  Since residuals can be positive or negative, 
a sum of residuals is not a good measure 
of overall error in the fit 

•  A better measure is the sum of squared 
residuals, E, which is only zero if every 
residual is zero 
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Maximum Likelihood Estimation  

•  Not meaningful to ask “What is the probability 
that my set of model parameters is correct?” 
–  Only one correct parameter set—Mother Nature! 

•  Better to ask “Given my set of model 
parameters, what is the probability that this data 
set occurred?” 
–  What is the likelihood of the parameters given the 

data? 
•  Inverse modeling is also known as “maximum 

likelihood estimation”. 



The Chi-Square Error Measure and 
Maximum Likelihood Estimation  

•  For Gaussian distribution of measurement 
noise with varying standard deviation, σi, 
the probability of the data set coming from 
the model parameters is given by 

•  Maximizing this probability involves 
maximizing ln(P) or minimizing –ln(P), 
yielding the chi-square function of 
weighted residuals 
–  the “weight” is the inverse of the variance 

of each measurement (wi = σi
-2) 

–  Other functions may be useful for non-
Gaussian measurement noise, yielding so-
called “robust estimation” methods 

•  If variance is assumed to be uniform, then 
let σ = constant = 1, and chi-square 
function yields the sum of squared 
residuals function defined earlier 
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Minimizing Chi-Square 
•  Since the error in the model fit depends on the model 

parameters, ak, minimizing the chi-square function requires 
finding where the derivatives are zero 

•  This yields a general set of M (nonlinear) equations for the 
M unknowns ak 

•  The model derivatives dŷ/dak are often known exactly, or 
may be approximated numerically using finite differences 

€ 

χ 2 =
[yi − ˆ y (xi)]

2

σ i
2

i=1

N

∑

€ 

∂(χ 2)
∂ak

= −2 [yi − ˆ y (xi)]
σ i

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂ˆ y (xi,a1..aM )

∂ak

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

N

∑ = 0 ; k =1..M



Linear Regression Analysis 
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Computing Model Parameters  
for Linear Regression 
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Regression versus Correlation 
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Linearization of Nonlinear Models 
•  Many nonlinear equations can be 

“linearized” by selecting a suitable 
change of variables 

•  Historically this has been a common 
approach in analysis of scientific data, 
mainly due to ease of implementation 

•  However, “linearization” often distorts 
the error structure, violates key 
assumptions, and impacts resulting 
model parameter values, which may 
lead to incorrect conclusions 

•  In our modern era of computers it is 
usually wisest to perform nonlinear 
least squares analysis when using 
nonlinear inverse models adapted from Lobemeier, 2000 
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General Model Fitting 



Nonlinear Model Fitting 
•  The selected model ŷ is a nonlinear 

function of model parameters ak, k=1..M 
•  The χ2 merit function is 

•  The gradients of χ2 with respect to 
model parameters ak must approach 
zero at minimum χ2 

•  However, because the gradients are 
nonlinear functions of a, minimization 
must proceed iteratively updating a until 
χ2 stops decreasing.   

•  In the steepest descent method, the 
constant, λ, must be small enough not 
to exhaust the downhill direction. 
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•  Alternative numerical methods include the inverse-Hessian method, the 
popular hybrid Levenberg-Marquardt method, and the robust but 
complex full Newton-type methods. 



Global Error Minimization 
•  The error function depends on 

model parameters ak, and can 
be thought of as an M-
dimensional “surface” of which 
we seek the minimum 

•  Depending on the complexity 
of the model (i.e. the number 
of model degrees of freedom, 
M) the error surface may be 
quite “bumpy” 

•  A challenge is to ensure that a given set of “optimal” 
model parameters represents the true global minimum of 
the error surface, and not a local minimum 

•  This can be tested by varying the initial guesses and 
comparing the resulting model parameters 



Implementation in Matlab 

function KDC_optimization"
global known;"
filename = input('Enter the name of file: ','s');"
data = dlmread(filename);"
x_data = data(:,1);"
y_data = data(:,2);"
known = 10;                             % Assign known model parameters"
guess = [.1 .1 1 1];                    % Guess initial values"
[optimum,resnorm] = lsqnonlin(@model,guess,LB,UB,options,x_data,y_data)"

y_model=model(optimum,x_data); !% Generate vector of simulated data"

plot(x_data,y_data,'bx',x_data,y_model,'r-');"
xlabel('Independent Variable (***)');"
ylabel('Dependent Variable (***)'); "

function y=model(a,x)"
global known;"
y=a(1)+a(2)*x.^2+a(3).*sin(a(4).*x) - known;    % May depend on known variables!



Goodness of Fit and the 
Residuals Plot 
•  The correlation coefficient (R2) is 

often used to characterize the 
goodness of fit between model 
and data. 

•  A high correlation can exist even 
for a model that systematically 
differs from the data. 

•  One must also examine the 
distribution of residuals--a good 
model fit should yield residuals 
equally distributed along x and 
normally distributed around zero 
with no systematic trends 

residuals 

adapted from Lobemeier, 2000 

model fits 



Comparing Two Model Fits 
•  The number of data points, N, must exceed 

the number of model parameters, M, 
yielding the degrees of freedom (DOF = N-M) 

•  Increasing the number of model 
parameters, M, will generally improve the 
quality of fit and reduce χ2 

•  The mean squared error can be used to 
compare two models fit to a given data set 

•  Increasing MSE with decreasing χ2 can 
reveal an over-parameterized model 

•  An F-statistic can be computed for the 
results of two model fits.   
–  F~1,  the simpler model is adequate 
–  F > 1, the more complex model is better, or 

random error led to a better fit with the 
complex model  

–  P-value defines the probability of such a 
“false positive” result  
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Accuracy of Estimated  
Model Parameters 

•  Underlying true set of 
model parameters, atrue, 
are known to Mother 
Nature but hidden from 
the experimenter 

•  Fitting D(o) using χ2 minimization yields the estimated model 
parameters a(o) 

•  Other experiments could have resulted in data sets D(1), D(2), 
etc. which would have yielded model parameters a(1), a(2), etc. 

•  We wish to estimate the probability distribution of a(i) - atrue 
without knowing atrue and without an infinite number of 
hypothetical data sets.  Hmmmm… 

•  True parameters are statistically 
realized, along with measurement 
errors, as the measured data set D(o) 
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Monte Carlo Simulation of 
Synthetic Data Sets 

•  Assume that if a(0) is a reasonable estimate of 
atrue, then the distribution of a(i)-a(0) should be 
similar to that of a(i)-atrue 

•  With the assumed a(0), and some understanding of 
the characteristics of the measurement noise, we can 
generate “synthetic data sets” DS

(1), DS
(2),… at the 

same xi values as the actual data set, D(o), have the 
same relationship to a(0) as D(o) has to atrue.   

•  For each DS
(1), perform a model fit to obtain 

corresponding aS(j), yielding one point aS(j)- a(0) for 
simulating the desired M-dimensional probability 
distribution.  This is a very powerful technique!! 

•  Note: if σi
2 are not known, can estimate after fit      

and use randn function in Matlab 
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The Bootstrap Method 
•  If you don’t know enough about the measurement errors 

(i.e. cannot even say they are normally distributed) then 
Monte Carlo simulation cannot be used. 

•  Bootstrap Method uses actual data set D(o), with its N data 
points, to generate synthetic data sets DS

(1), DS
(2),… also 

with N data points. 

•  Randomly select N data points from D(o) with replacement, 
which makes DS

(j) differ from D(o) with a fraction of the 
original points replaced by duplicated original points. 

•  The χ2 merit function does not depend on the order of (xi,yi), 
so fitting the DS

(j) data yields model parameter sets aS(j) as 
with Monte Carlo, except using actual measurement noise. 



Confidence Intervals and  
Accuracy of Model Parameters 

•  The probability distribution is a 
function defined on M-dimen-
sional space of parameters a.   

•  A confidence interval is a 
region that contains a high 
percentage of the total 
distribution relative to model 
parameters of interest. 

•  You choose the confidence 
level (e.g. 68.3%, 90%, etc.) 
and the region shape. 
–  e.g. lines, ellipses, ellipsoids 

•  You want a region that is 
compact and reasonably 
centered on a(0). In MatLab: y=prctile(x,[5 95])!



Validating Physical Interpretation of 
Model Parameters 
•  Physical sensibility 

–  Chemical rate constant cannot be negative 
–  Poisson’s ratio cannot exceed 0.5 
–  Can enforce lower and upper bounds on parameters, but should 

examine closely if these end up “optimal”  

•  Independent measurements of key physical quantities 
–  Comparison with published values or limiting behavior 
–  Measure steady state modulus of viscoelastic material 

•  Experimentally alter specific parameters, collect data, and 
examine results of model fit 
–  May involve building a physical model for testing 

•  Compare model fitting results using data from normal and 
abnormal populations 
–  In asthma patients, airway resistance should be higher than normal 



Assignment 

DeBroe, Kidney Int, 2006 

B lymphocytes in the immune response 

www.EnCognitive.com 



Assignment 
•  ODE model of BrdU labeling to estimate proliferation 

and death rates of B cells. 

  U – number of unlabeled B cells 
  L – number of BrdU labeled B cells 

  p – rate of proliferation (per hour) 
  d – rate of death (per hour) 
  s – rate of cell inflow from source (cells/hr) 

•  Given experimental data on fraction of total B cells 
labeled with BrdU versus time, develop a model to 
fit the data, estimate values of p, s, and d, and 
evaluate the model performance. 

Steven Kleinstein and Uri Hershberg 



Resources 
•  Numerical Recipes online 

 www.nr.com/nronline_switcher.html 

•  Matlab online help 
 www.mathworks.com/access/helpdesk/help/techdoc/ 
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