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1 Introduction 1

There is a plethora of ways to model biological systems, depending on size, detail required and

questions asked. One method consists in writing down a collection of coupled ordinary differen-

tial chemical equations, where each equation describes a number of reactions. The variables are

the time dependent concentrations of participating molecules, and the parameters are reaction

rate constants. In this approach, where dependences on spatial location are neglected, except for

the consideration of different cellular compartments suchas cytoplasm or nucleus, reactions are

assumed to occur homogeneously throughout the compartmental volume. Concentrations are

defined for large numbers of molecules, such that when numbers change by one or two units in

a reaction, these changes can be treated differentially. Moreover when the number of molecules

is large any two reactions can take place at the same time. Thesystem of ordinary differential

equations for concentrations thus represents a collections of reactions occurring simultaneously

all through the reaction volume.

The simplifying features of this approach break down when the numbers of molecules be-

come small, and reactions now occur in some random order rather than simultaneously. One

then needs to adopt a new language for the description of the system: probabilities for the state

of the system defined by the number of molecules of each type ata given time, replace the differ-

entiable concentrations. These probabilities evolve in time as such or such reaction takes place

randomly among all possible reactions. Gillespie’s algorithm (Gillespie, 1977) is a way of im-

plementing consistently this probabilistic description of a biological system. The probabilistic

description by its very nature applies to single cells. The connection with molecular concentra-

tions appears when, in the probabilistic formalism, averages are taken over many cells. These

averages satisfy the same equations as concentrations. Thus the behavior of concentrations can

1This lecture is part of the Yale Summer School in Computational Immunology (August 2008) which is supported

by PRIME (NIAID contract HHSN266200500021C). It is based onand overlaps with a tutorial given in April 2006

by C. Jayaprakash and the author at Princeton University as part of the joint educational program of PICASso (NSF

IGERT grant DGE-9972930) and PRIME. The MATLAB program referred to was run and studied by the students in

a Discussion session. The program is a MATLAB version of a FORTRAN program written by the author.
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be interpreted as that of a population average, provided that fluctuations around the average are

small.

Noise can play an important role in single cell behavior (for a recent review see Rao et al.,

2002), which is hidden when only population average is measured. An example is the all-or-

none single cell response observed by Ferrell and Machleder (1998) in Xenopus oocytes under

progesterone stimulation, whereas average response is graded. Another example is based on

NF-κB oscillations observed both for cell populations (Hoffmann et al. 2002) and single cells

(Nelson et al., 2004) when stimulated by TNFα. Here again average behavior is a poor descrip-

tion of single cell oscillations that differ in both amplitude and phase (Hayot and Jayaprakash,

2006) because of fluctuations in the signaling cascade components set into motion by TNFα.

This lecture is based on the study of a very simple model of gene transcription and trans-

lation (Thattai and Van Oudenaarden, 2001). Section 2 contains a number of remarks on mea-

surements in single cell experiments, as well as some results on the Poisson probability distribu-

tion. Section 3 describes the Thattai-Van Oudenaarden model (2001) for gene transcription and

mRNA translation. In section 4, isolating from the model the reactions of production and degra-

dation of mRNA, we derive the relevant the Master equation and discuss some of its features.

This is followed in section 5 by the complete Master Equation of the Thattai-Van Oudenaarden

model. Section 6 contains a description of the Gillespie algorithm, which implements the Mas-

ter Equation, followed in section 7 by some remarks concerning the computational efficiency

of the algorithm. Section 6 calls the MATLAB program that runs Gillespie’s algorithm for the

Thattai-Van Oudenaarden model, and produces data that enableone to appreciate the role of

stochasticity in single cell experimnets. The stochasticity observed in the simulations of the 
Thattai-Van Oudenaarden model is due to the occurrence of small numbers of molecules, mRNAs 
in particular. This is so-called "small copy number" noise. There exist other possible sources of 
noise (transcriptional, extrinsic) that can be implemented in Gillespie's algorithem.
  

2 Single cell experiments

Most cellular measurements involve very many cells, where protein or mRNA concentrations are

obtained across a population of lysed cells, through techniques such as Western blot (proteins)

or microarrays (mRNA). There is the implicit assumption that the measured average behavior

over many cells represents the typical behavior of any single cell, in other words that cell to cell

variations, in protein number for example, are small or/and not significant for the understanding

of cellular function. The examples mentioned in the Introduction show that this is not always

true (see also Rao et al, 2002) and that single cell experiments can reveal new aspects of cellular

behavior.

How does one typically proceed in a single cell experiment? Let us suppose that there are

N identical cells, prepared under the same conditions, and that the measurement is the determi-

nation - at some point in time - of the number of copies of a proteinP in each cell. Thus one

measuresp1 proteinP in cell number 1,p2 in cell 2, and so on up topN in cell N. From these

numbers one can calculate two quantities, an average number< p > of proteins per cell, and a

standard deviationσ from the average number which indicates the level of variability between
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cells:

< p > =
1

N
(p1 + p2 + p3 + ........pN ) (1)

< p2 > =
1

N
(p1

2 + p2
2 + p3

2 + ........pN
2) (2)

From these two quantities one obtains the varianceσ2

σ2 =< p2 > − < p >2 (3)

and the standard deviationσ

σ =
√

σ2 (4)

If we now assume that the number of cells is large, the calculated quantities can be given a

statistical interpretation, where the histogram of cellular responses (the number of cells for

which the measured protein number is the same within a small interval around some value)

becomes a good approximation to the probability distribution of the number of proteins across

cells. This probability distribution can then be compared to known ones, such as gaussian,

Poisson, or gamma distribution, which can reveal somethingof the underlying mechanisms of

stochasticity. One can also - by changing the amount of stimulus - vary< p > andσ2, and

plot σ2 versus< p >: if, for instance, one finds thatσ2 =< p > the probability distribution is

poissonian (see next section). The Poisson distribution isentirely determined by the knowledge

of its average value. Generally, however, the full probability distribution (or histogram) contains

much more information then what can be gathered from averagevalue and standard deviation.

2.1 Notes on the Poisson probability distribution

The Poisson distribution is particularly important for this lecture, since it characterizes both the

birth-and-death process of production and decay of a mRNA, and also plays a crucial role in the

implementation of Gillespie’s algorithm.

The expression of a Poisson probability distributionP (n) for n events is

P (n) =
n̄n exp−n̄

n!
(5)

Properties:

-
∑

n P (n) = 1

-
∑

n nP (n) = n̄ =< n >, theaveragenumber of events

-
∑

n n2P (n) = n̄2 + n̄ =< n2 >

Thus for a Poisson distribution thevariance σ2 =< n2 > − < n >2=< n >, and thecoef-

ficient of variation Cv = σ/ < n >= 1/
√

< n >. One also finds in the literature theFano

factor F = σ2/ < n >, which is equal to 1 for a Poisson distribution.
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2.2 Remarks

1. Homogeneous and inhomogeneous Poisson process

If the Poisson process takes place at a rater for a timeT , then in the above expression

n̄ = r T . For a constant rate the Poisson process is called homogeneous, for a time dependent

rate inhomogeneous. For ahomogeneous process of rater one has

P (n) =
(rT )n exp−rT

n!
(6)

2. Numerical implementation of a Poisson process.

For both homogeneous and inhomogeneous Poisson processes,and for a choice of time step

∆t such thatr ∆t < 1, one draws at each time step a uniformly distributed random number

xrand between 0 and 1. Ifr ∆t > xrand an event takes place. This method is based on the fact

that for sufficiently small∆t, P (1) = r ∆t, andP (0) = 1 − r ∆t.

3. Time distribution between successive events for a constantrate Poisson process.

Suppose an event occurred at timet. What is the probabilityP (τ) that the next one takes

place betweent + τ andt + τ + dτ? One can decompose the probability in the following way:

P(τ )=(probability that no event takes place betweent and t + τ ) × (probability that one

event occurs betweent + τ andt + τ + dτ ), or formally P(τ )= exp(−r τ) × r dτ , wherer is

the constant rate of the Poisson process. The two terms in theexpression of P(τ ) can be read off

equation (6).

The probability density function for successive time intervals is therefore a decaying expo-

nential

p(τ) = r exp(−r τ) (7)

Properties:

-
∫
∞

0 dτ p(τ) = 1

- < τ >= 1/r

- < τ2 >= 2/r2

- σ2 =< τ2 > − < τ >2= 1/r2, and therefore the coefficient of variationCv = σ/ < τ >= 1

3 A simple model of cellular transcription and translation (Thattai

and Van Oudenaarden, 2001).

Consider the following set of chemical reactions for transcription of a geneD into mRNA, and

subsequent translation of the latter into proteins:

D
k1→ D + M (8)

M
k2→ M + P (9)
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with reaction ratesk1 andk2, respectively. The mRNA, calledM , as well as the protein, denoted

by P , are degraded through the reactions

M
k3→ ∅ (10)

P
k4→ ∅ (11)

with k3 andk4 the corresponding rate constants, or equivalently with respective half-livesτ3 =
ln2
k3

andτ4 = ln2
k4

.

The chemical rate equations for the concentrations [M] and [P] of mRNAM and proteinP

are:

d[M ]/dt = k1[D] − k3[M ] (12)

d[P ]/dt = k2[M ] − k4[P ] (13)

This is a simple system, linear in the concentrations, such that in steady state[M ] = k1

k3
[D], [P ] =

k2

k4
[M ]. An important parameter isb, the average number of proteins produced in a mRNA life-

time, which isb = k2/k3. b is called burst factor; the distribution of proteins in a burst has been

recently measured (Cai et al., 2006; Yu et al., 2006).

In order to simulate the system of reactions (8)-(11), whether deterministically or stochas-

tically, one needs to know the initial amounts (numbers or concentrations) ofD,P,M and the

reaction rate constants. In the following we will take in theinitial state the numbersD = 1, P =

M = 0, and use parameter valuesk1 = 0.01 sec−1, k3 = 0.00577 sec−1(τ3 = 2min), k4 =

0.0001925 sec−1(τ4 = 1hour), b = 2.

Notice that in order to reach steady state from the given initial state, one must run in time of

the order of 10 times the longest time scale of the system, which here isτ4, the protein lifetime.

At 6 times the protein lifetime, one is still a few percent away from the calculated steady state

value.

The predicted steady state values for the concentrations ofP andM are obtained from the

chemical rate equations (12) and (13). Steady state means that concentrations no longer vary

in time and therefore concentration steady state values areobtained by putting the left-hand

sides of equations (12) and (13) equal to zero. In this way onefinds (after multiplying by the

volume)M = 1.73, P = 104 (the number of proteins is proportional tob). Note that because

the number ofM per cell is very small the interpretation is that on average over a population

M=1.73 (see the second paragraph of the introduction), whichmeans that one can expect cells

to have between 0 and say 4 mRNA (see the distribution in Figure 1). For the model considered,

the deterministic formalism gives only an approximate description of cellular mRNA content.

4 Master equation (Van Kampen, 1992)

”Birth-and-death” process: production and decay of mRNA

Consider equations (8) and (10) which describe production and decay (”birth-and-death”)

of mRNA M . Let P (n, t) be the probability of havingn molecules of mRNA at timet. The
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corresponding so-called Master equation describes the variation in time ofP (n, t) and is ( for

nD = 1)

∂P (n, t)/∂t = k1[P (n − 1, t) − P (n, t)] + k3[(n + 1)P (n + 1, t) − nP (n, t)] (14)

Where does this equation come from?

Suppose at time t the state of the system, i.e. the number of mRNA molecules, is known. What

then is the probability P(n,t+dt) of there being n moleculesat time t+dt, where dt is considered

sufficiently small that only one of the reactions of production or decay can occur. There are

three possibilities:

- there are n-1 molecules at time t, and production takes place in time dt which gives a contribu-

tion to P(n,t+dt) equal tok1 dt P (n − 1, t) (we takenD = 1)

- there are n+1 molecules at time t, and decay takes place in time dt which gives a contribution

to P(n,t+dt) equal tok3 dt (n+1)P (n+1, t). The factor of (n+1) occurs because the decay can

take place from anyone of (n+1) molecules

- no reaction takes place, the probability of which is given by P (n, t) multiplied by[1− k1 dt−
k3 dt n] , where the latter term is given by the total probability equal to 1 minus the probability

that one of the two reactions takes place.

By putting these three term together and replacingP (n,t+dt)−P (n,t)
dt by the derivative∂P (n, t)/∂t,

one obtains the above Master equation (14).

Its steady state solution, which satisfies the equation(n+1)P (n+1) = nP (n)+k1/k3[P (n)−
P (n − 1)], can be found recursively, such that

P (1) = k1/k3 P (0); P (2) = 1/2(k1/k3)
2 P (0); P (n) = 1/n!(k1/k3)

n P (0)

with P (−1) = 0.

Normalization of this probability function then givesP (0) = exp(−k1/k3), and the expected

form of a Poisson distribution for P(n) (see expression (5)), namelP (n) = (k1/k3)n exp(−k1/k3)
n! .

The steady state distribution ofM thus follows a Poisson distribution, with average steady state

value equal tok1/k3 (see equation 5), which is precisely the value obtained directly from solving

equation (12) of the deterministic system, an example of thecorrespondence between determin-

istic chemical reaction behavior and that of the populationavarage of a stochastic formulation.

This correspondence becomes clearer still if one multiplies both sides of equation (14) byn and

sums over alln (
∑

P (n, t) = 1,
∑

nP (n, t) =< n(t) >), which leads to

d < n(t) > /dt = k1 − k3 < n(t) (15)

This equation has the same form as (12): thus the average value over all cells< n(t) > follows

the same equation as the mRNA concentration of the deterministic equation.
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5 Master equation for the Thattai-Van Oudenaarden model

The reactions of the model, given in section 3, are

D
k1→ D + M

M
k2→ M + P

M
k3→ ∅

P
k4→ ∅

We have already derived the Master equation for the two reactions involvingM only (see section

4). Here the relevant probability isP (nP , nM , t), the probability of having at time t in the

volume considerednP proteinsP andnM mRNA M . The procedure for deriving the Master

equation satisfied byP is the same as that illustrated above (section 4) for the mRNAbirth-and-

death process. One calculatesP (nP , nM , t + dt) from knowledge of the state of the system at

time t: there are contributions from each reaction, as well as fromthe situation where, during

timedt, the state of the system does not change. The result is:

∂P (nP , nM , t)/∂t = k2nM [P (nP − 1, nM , t) − P (nP , nM , t)]

+ k3[(nM + 1)P (nP , nM + 1, t) − nMP (nP , nM , t)]

+ k1nD[P (nP , nM − 1, t) − P (nP , nM , t)]

+ k4[(nP + 1)P (nP + 1, nM , t) − nP P (nP , nM , t)] (16)

This is the Master equation for the Thattai-Van Oudenaardenmodel (2001). Lines 2 and 3 on

the right-hand side of equation (16) correspond to the two reactions involvingM but notP

derived previously (see section 4). We will putnD = 1 (nD is the number of DNA molecules)

from now on. This Master equation is relatively simple, because the number of reactions is

small, and reactions are linear in the components. A result of the latter is that reaction constants

are simply rates, without any volume dependence. We will discuss more general cases later

when describing Gillespie’s algorithm. Much can be learnedabout first and second moments by

multiplying both sides of the Master equation bynP , orn2
P and similarly fornM , and summing

over allnP andnM to obtain< nP >, or < n2
P >, and so on. The angular brackets correspond

to the average over a population of cells.

Using the same approach as in section 4 one obtains the equations satisfied by< nM > and

< nP >

d < nM > /dt = −k3 < nM > +k1 (17)

d < nP > /dt = −k4 < nP > +k2 < nM > (18)

We verify again that these equations for population averages are similar to the concentration

equations (cf. equations 12 and 13) derived previously. When fluctuations around averages are

small, concentrations represent averages over cell populations divided by cell volume.

In all cases there are fluctuations embodied in the second andhigher moments. At steady state

7



one finds the following for the Thattai-Van Oudenaarden model

σ2
M =< n2

M > − < nM >2=< nM >

σ2
P / < nP >2= 1

<nP > [1 + k2/(k3 + k4)]

The stochastic behavior of mRNA is Poisson. It corresponds to the ”birth-and-death” process

seen before (section 4.). As to protein number fluctuations,there is an additional term besides

the Poisson term, corresponding to the fact that the number of mRNA, from which protein is

translated, is itself stochastic. Often mRNA lifetimes (ofthe order of minutes) are much smaller

than protein lifetimes (of the order of hours): thusk4/k3 << 1 and one has simply

σ2
P / < nP >2≃ 1+k2/k3

<nP > = 1+b
<nP > ,

whereb is the average number of proteins produced in a mRNA lifetime, as defined in section

3.

6 Gillespie’s algorithm (Gillespie, 1977)

Generally biological systems are much more complex than what is represented in the Thattai-

Van Oudenaarden model (2001). The number of reactions in a single cell can be in the tens and

larger; many reactions such as dimerization or the binding of an enzyme to its substrate have

nonlinear components. Though one can in principle write down the Master equation, it is too

complicated to be solved by means other than numerical. Fortunately there is the straightforward

numerical algorithm developed by Gillespie (1977), which he showed to be equivalent to solving

the Master equation of a system of chemical reactions in a well stirred container. The crux of

the algorithm is the drawing of two random numbers at each time step, one to determine after

how much time the next reaction will take place, the second one to choose which one of the

reactions will occur.

Suppose there areµ = 1, 2, .... reactions. We consider reactions with at most two species

(the probability of three species reacting at the same time is considered negligible). The quantity

characterizing each reaction is the probabilityaµ(t)dt that given the state of the system at time

t, reactionµ will occur in volume V in the time interval (t, t+dt).aµ(t) is the product of two

parts: the reaction ratecµ for the reactionµ, which is related to the chemical rate constants for

that reaction, and the number of possible reactionsµ in volume V. For example, for reaction

P1 + P2
cµ→ Z (19)

whereZ is the heterodimer formed ofP1 andP2, one has

aµ(t) = cµP1P2

where the productP1P2 represents the product of the numbers ofP1 and ofP2 molecules.

If P2 is identical toP1, then

aµ(t) = cµP1(P1 − 1)/2 (20)

whereP1(P1 − 1)/2 is the number of distinct pairs ofP1.

Remark: relation betweencµ’s and chemical constantsk
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By definition thecµ’s are rates with dimension of an inverse time. When for a given reaction

the chemical constant has the dimension of an inverse time, as is the case of the reactions of the

Thattai-Van Oudenaarden model, thecµ is simply equal to the correspondingk. However for

reaction (19), namely

P1 + P2
k→ Z (21)

for which the chemical rate equation would read

d[Z]/dt = k[P1][P2] (22)

the chemical constantk has dimension of volume divided by time. Therefore here

cµ = k/V (23)

whereV represents the volume of the region in which the reaction takes place.

If P1 andP2 are the same as in (20) thencµ = 2k/V .

In cases like these chemical rate constants are expressed ininverse molars and inverse seconds.

It is useful to note that 1 nM corresponds to 1 particle in a volume of 1.6µ3.

6.1 Implementation of Gillespie’s algorithm (Gillespie, 1977)

Suppose the system is known at time t, which means the number of molecules of each type

is known, and consequently the quantitiesaµ(t) are known for each reaction. Calla0(t) =
∑

aµ(t) the sum of allaµ(t). a0(t) dt is the probability of any reaction occurring in (t, t+dt).

Then do the following steps:

1. find the timeτ after t at which the next reaction will take place, by drawing a random

number from an exponential probability density function ofratea0 ( p(τ) = a0 exp(−a0τ)).

The reasoning is the same as in point 3 of section 2.2.

2. choose now at random the reaction which will occur at timet+τ . Draw a random number

from a uniform distribution between 0 and 1. If that number falls between 0 anda1/a0 reaction

1 is chosen, betweena1/a0 and(a1 + a2)/a0 reaction 2 is chosen and so on.

3. the occurrence of the chosen reaction at timet + τ changes the numbers for molecules

involved in the reaction, for example for the forward reaction of (19)P1 → P1−1, P2 → P2−1,

andZ → Z + 1. Thus the values of theaµ which depend on any of these numbers change. One

then goes back to point 1 of the algorithmic implementation with a new distribution of molecules

at timet + τ . The process is reiterated for as long as one wishes to followthe evolution of the

system.

Program in MATLAB: tattai.m

Figure 1

We run the Gillespie simulation for the Thattai-Van Oudenaarden model with 200 cells, with

the parameter values given in section 3. The results are in figure 1 where a number of quantities

characterizing cell-to-cell variability are shown, in particular the comparison of average protein

number and individual cell behavior for three randomly chosen cells in the top left panel. Each
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Figure 1: Each panel offers a different view of single cell variability in both transient and steady

state regimes. The graphs correspond to b=2, for which< nP >= 104.
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cell starts off from the same initial state, and ends up after atime chosen long enough to reach

steady state, with a different number of proteins, due to internal fluctuations. The average

number is close to the value of 104 calculated for the deterministic system of section 3. The

histogram based on the protein number in each cell at the end of the run (40,000 seconds) shows

a wide distribution between cells with as few as 60 proteins to cells with as many as 150 proteins.

The program, at the end of the run, also prints out the steady state values of the average number

of proteins, Fano factor, and coefficient of variation. One can compare some of these values

with the analytical results at the end of section 3, which give a value of 3 for the Fano factor,

and 0.17 for the coefficient of variation. One should note that the numerical values for average

number of proteins, or Fano factor fluctuate themselves from run to run. The statistical error on

the average is equal toσP /
√

Nc, whereNc is the number of cells. Here this error is about 1.2.

As one includes more cells into each run, the statistical errors decrease, and one obtains results

for the average number of proteins, for example, closer to the deterministic values. The bottom

panel of Figure 1 shows the mRNA histogram. Whereas the deterministic approach (section 3

and equation (12)) gives a number of mRNA molecules equal to 1.73, the histogram shows that

that number arises from a distribution over cells with 0,1,2,3,4, or 5 copy numbers. Here the

poulation average gives a poor description of single cell behavior.

7 Efficiency of Gillespie’s algorithm

Gillespie’s algorithm, when implemented in FORTRAN or C, leads to very efficient numerical

computations for systems of several tens of reactions. The exception occurs when some reac-

tions, such as a dimerization reaction, are very fast on the time scales for which the system is

observed, which are typically time scales of the order of the longest time scales of reaction dy-

namics. In this case of some very large rate constant, coupled with a reasonably large number

of molecules, Gillespie’s algorithm spends a large fraction of time selecting for updating that

very fast reaction. The computation then becomes inefficient. (For a discussion of this issue,

remedies and problems, see Bundschuh et al. (2003)).

Several methods have been proposed to accelerate Gillespie’s algorithm for large systems

of reactions, such as the ”tau-leap” stochastic algorithm (Gillespie and Petzold, 2003) and the

algorithm of Gibson and Bruck (1999). The first scheme replaces serial updating of the state

of the system through individual reactions by a probabilistic updating of many interactions in

some given time interval (under certain conditions). In the second scheme, where the problem

mentioned above with very fast reactions persists, updating takes place as in the usual Gillespie

algorithm, albeit much more efficiently, A software package, called ”Dizzy” (Ramsey et al.,

2005), is available that implements Gillespie’s algorithm and the above algorithmic improve-

ments.
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8. Transcriptional noise and bursting 
The noise considered in the previous sections, evaluated in the Thattai-Van Oudenaarden model, is so-
called “small copy number “ noise. It is a consequence of the small numbers of molecules, mRNAs in 
particular,  with fluctuations (coefficient of variation) typically decreasing as the square root of their 
number. There exist other sources of noise, classified usually as either intrinsic or extrinsic. An 
example of extrinsic noise would be cell-to-cell variability of some kinase that is activated by a 
stimulus and sets in motion a signaling pathway.  Other sources of intrinsic noise are transcription or 
transcriptional bursting. Both are present in a model of interferon beta induction in single human 
dendritic cells infected by a virus  (Hu et al., 2007,2009; Iyer-Biswas et al., 2009). The model that 
follows is a simplified version. It includes two transcription factors P1 and P2 that bind cooperatively 
to create complex Ds11. The latter goes back and forth to a state D* which produces mRNA (M) that 
also degrades. The reactions are the following:  

 

                                D+P1  Ds1 

                        Ds1+P2  Ds11 

                        Ds11  D* 

                        D*   D* + M 

                        M  0 
The first two reactions correspond to stochastic transcriptional binding, the last three represent busting 
during the time intervals transcription takes place from D*. 
A MATLAB program simulates the reactions with Gillespie's algorithm. The simulation runs for 10 
hours with 500 cells.  Binding starts at 5 hours to mimic the situation where it takes about 5 hours after 
cell infection to activate transcription factors. The program produces 4 figures: a histogram of mRNA, 
the same histogram on a log-log plot with a linear fit, the exponent of which (printed out) determines 
the power law behavior of the distribution when it is long-tailed, the average mRNA as a function of 
time, and a histogram of times where each cell reaches the bursting state D* for the first time. The last 
figure makes clear that a fraction of the cells (printed out) never reaches induction stage. By changing 
forward or backward rates of the conversion of Ds11 to D*, and thus the probability of reaching the 
bursting state or the time spent in it, one can explore a range of mRNA distributions.  
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