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1 Introduction?

There is a plethora of ways to model biological systems, oigipg on size, detail required and
guestions asked. One method consists in writing down aatidleof coupled ordinary differen-
tial chemical equations, where each equation describembernof reactions. The variables are
the time dependent concentrations of participating mddsguand the parameters are reaction
rate constants. In this approach, where dependences aal $pedtion are neglected, except for
the consideration of different cellular compartments saglkytoplasm or nucleus, reactions are
assumed to occur homogeneously throughout the compadameitime. Concentrations are
defined for large numbers of molecules, such that when nusrdhemge by one or two units in
a reaction, these changes can be treated differentiallyedder when the number of molecules
is large any two reactions can take place at the same timesy&tem of ordinary differential
equations for concentrations thus represents a collectibreactions occurring simultaneously
all through the reaction volume.

The simplifying features of this approach break down whenrthmbers of molecules be-
come small, and reactions now occur in some random ordegrréthn simultaneously. One
then needs to adopt a new language for the description of/dters: probabilities for the state
of the system defined by the number of molecules of each typgiaen time, replace the differ-
entiable concentrations. These probabilities evolvenretas such or such reaction takes place
randomly among all possible reactions. Gillespie’s athomi (Gillespie, 1977) is a way of im-
plementing consistently this probabilistic descriptidradiological system. The probabilistic
description by its very nature applies to single cells. Thvenection with molecular concentra-
tions appears when, in the probabilistic formalism, avesagre taken over many cells. These
averages satisfy the same equations as concentrations.tfignbehavior of concentrations can
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be interpreted as that of a population average, provided tlatifitions around the average are
small.

Noise can play an important role in single cell behavior (for a recent review see Rao et al.,
2002), which is hidden when only population average is measured. An example is the all-or-
none single cell response observed by Ferrell and Machleder (1998) in Xenopus oocytes under
progesterone stimulation, whereas average response is graded. Another example is based on
NF-xB oscillations observed both for cell populations (Hoffmann et al. 2002) and single cells
(Nelson et al., 2004) when stimulated by TédFHere again average behavior is a poor descrip-
tion of single cell oscillations that differ in both amplitude and phase (Hayot and Jayaprakash,
2006) because of fluctuations in the signaling cascade components set into motiondoy TNF

This lecture is based on the study of a very simple model of gene transcription and trans-
lation (Thattai and Van Oudenaarden, 2001). Section 2 contains a number of remarks on mea-
surements in single cell experiments, as well as some results on the Poisson probability distribu-
tion. Section 3 describes the Thattai-Van Oudenaarden model (2001) for gene transcription and
MRNA translation. In section 4, isolating from the model the reactions of production and degra-
dation of MRNA, we derive the relevant the Master equation and discuss some of its features.
This is followed in section 5 by the complete Master Equation of the Thattai-Van Oudenaarden
model. Section 6 contains a description of the Gillespie algorithm, which implements the Mas-
ter Equation, followed in section 7 by some remarks concerning the computational efficiency
of the algorithm. Section 6 calls the MATLAB program that runs Gillespie’s algorithm for the
Thattai-Van Oudenaarden model, and produces data that enableone to appreciate the role of
stochasticity in single cell experimnets. The stochasticity observed in the simulations of the
Thattai-Van Oudenaarden model is due to the occurrence of small numbers of molecules, mMRNAs
in particular. This is so-called "small copy number" noise. There exist other possible sources of
noise (transcriptional, extrinsic) that can be implemented in Gillespie's algorithem.

2 Single cell experiments

Most cellular measurements involve very many cells, where protein or mMRNA concentrations are
obtained across a population of lysed cells, through techniques such as Western blot (proteins)
or microarrays (mMRNA). There is the implicit assumption that the measured average behavior
over many cells represents the typical behavior of any single cell, in other words that cell to cell
variations, in protein number for example, are small or/and not significant for the understanding
of cellular function. The examples mentioned in the Introduction show that this is not always
true (see also Rao et al, 2002) and that single cell experiments can reveal new aspects of cellular
behavior.

How does one typically proceed in a single cell experiment? Let us suppose that there are
N identical cells, prepared under the same conditions, and that the measurement is the determi-
nation - at some point in time - of the number of copies of a profeim each cell. Thus one
measure®; protein P in cell number 1p- in cell 2, and so on up tpy in cell N. From these
numbers one can calculate two quantities, an average nuwmnpes of proteins per cell, and a
standard deviatiom from the average number which indicates the level of variability between



cells:
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From these two quantities one obtains the variance
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If we now assume that the number of cells is large, the cakedilguantities can be given a
statistical interpretation, where the histogram of callulesponses (the number of cells for
which the measured protein number is the same within a smialhvial around some value)
becomes a good approximation to the probability distrdoutef the number of proteins across
cells. This probability distribution can then be comparecknhown ones, such as gaussian,
Poisson, or gamma distribution, which can reveal sometbfribe underlying mechanisms of
stochasticity. One can also - by changing the amount of $isnuvary < p > ando?, and
plot o2 versus< p >: if, for instance, one finds that> =< p > the probability distribution is
poissonian (see next section). The Poisson distributientisely determined by the knowledge
of its average value. Generally, however, the full prolighidlistribution (or histogram) contains
much more information then what can be gathered from averalge and standard deviation.

2.1 Notes on the Poisson probability distribution

The Poisson distribution is particularly important forstecture, since it characterizes both the
birth-and-death process of production and decay of a mRNéaéso plays a crucial role in the
implementation of Gillespie’s algorithm.

The expression of a Poisson probability distributi(r) for n events is

n"exp —n
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Properties:

-2, Pn) =1

- Y, nP(n) =n =< n >, theaveragenumber of events

-3, n?P(n) =n?+n=<n?>

Thus for a Poisson distribution thariance 02 =< n? > — < n >2=< n >, and thecoef-
ficient of variation C,, = 0/ < n >= 1/y/<n >. One also finds in the literature tt@no
factor F = 02/ < n >, which is equal to 1 for a Poisson distribution.



2.2 Remarks

1. Homogeneous and inhomogeneous Poisson process

If the Poisson process takes place at a rafer a time 7', then in the above expression
n = rT. For a constant rate the Poisson process is called homaggrfeo a time dependent
rate inhomogeneous. Fohamogeneous process of rate one has

(rT)"exp —rT

Pin) = n!

(6)

2. Numerical implementation of a Poisson process

For both homogeneous and inhomogeneous Poisson procasddsr a choice of time step
At such thatr At < 1, one draws at each time step a uniformly distributed randamber
Trand DEtWeEEN 0 and 1. i At > x,.,,4 @n event takes place. This method is based on the fact
that for sufficiently smaliAt, P(1) = r At, andP(0) = 1 — r At.
3. Time distribution between successive events for a constardate Poisson process

Suppose an event occurred at timéNhat is the probabilityP(7) that the next one takes
place betweenn+ 7 andt + 7 + dr? One can decompose the probability in the following way:

P(r)=(probability that no event takes place betweeandt + 7) x (probability that one
event occurs betweerd- 7 andt + 7 + dr), or formally P¢)= exp(—r7) x rdr, wherer is
the constant rate of the Poisson process. The two terms gxfgiression of P{) can be read off
equation (6).

The probability density function for successive time ingds is therefore a decaying expo-
nential

p() =7 exp(—rT) @)

Properties:

- o drp(r) =1

-<T>=1)r

-< 7t >=2/r?

-0? =< 72 > — < 7 >2=1/r?, and therefore the coefficient of variatiéh, = o/ < 7 >=1

3 A simple model of cellular transcription and translation (Thattai
and Van Oudenaarden, 2001).

Consider the following set of chemical reactions for traipgon of a geneD into MRNA, and
subsequent translation of the latter into proteins:

o
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with reaction rateg; andks, respectively. The mRNA, calleti/, as well as the protein, denoted
by P, are degraded through the reactions

M kg (10)
P 5o (1)
with k3 andk,4 the corresponding rate constants, or equivalently witheetve half-livesrs =
n2 __In2
Fs andT4 = -

The chemical rate equations for the concentrations [M] &jadf MRNA A and proteinP
are:

dIM)/dt = k[D] - ks[M] (12)
dlP]/dt = ko[M]— k4[P] (13)
This is a simple system, linear in the concentrations, duatin steady statd/]| = ’,% [D], [P] =
i—i[M]. An important parameter is the average number of proteins produced in a mRNA life-
time, which isb = ko /k3. b is called burst factor; the distribution of proteins in asiuras been
recently measured (Cai et al., 2006; Yu et al., 2006).

In order to simulate the system of reactions (8)-(11), waetteterministically or stochas-
tically, one needs to know the initial amounts (numbers @rceatrations) ofD, P, M and the
reaction rate constants. In the following we will take in thidial state the number® =1, P =
M = 0, and use parameter valuks = 0.01 sec™!, k3 = 0.00577 sec™ (13 = 2min), ky =
0.0001925 sec™! (14 = 1 hour), b = 2.

Notice that in order to reach steady state from the givermalrstate, one must run in time of
the order of 10 times the longest time scale of the systentwhiere isr4, the protein lifetime.
At 6 times the protein lifetime, one is still a few percent gvflaom the calculated steady state
value.

The predicted steady state values for the concentratiofsafd M are obtained from the
chemical rate equations (12) and (13). Steady state meansdhcentrations no longer vary
in time and therefore concentration steady state valueslatsined by putting the left-hand
sides of equations (12) and (13) equal to zero. In this wayfimas (after multiplying by the
volume) M = 1.73, P = 104 (the number of proteins is proportional & Note that because
the number of\f per cell is very small the interpretation is that on averager @ population
M=1.73 (see the second paragraph of the introduction), whieans that one can expect cells
to have between 0 and say 4 mRNA (see the distribution in EigjurFor the model considered,
the deterministic formalism gives only an approximate dpsion of cellular mMRNA content.

4 Master equation (Van Kampen, 1992)

"Birth-and-death” process: production and decay of mMRNA
Consider equations (8) and (10) which describe producti@hdecay ("birth-and-death”)
of MRNA M. Let P(n,t) be the probability of having. molecules of mMRNA at time. The
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corresponding so-called Master equation describes thiatiear in time of P(n,t¢) and is ( for

np =1)
O0P(n,t)/0t = ki[P(n —1,t) — P(n,t)] + k3[(n + 1)P(n+ 1,t) — nP(n,t)] (14)

Where does this equation come from?
Suppose at time t the state of the system, i.e. the number dfAnRolecules, is known. What
then is the probability P(n,t+dt) of there being n molecuwesme t+dt, where dt is considered
sufficiently small that only one of the reactions of prodowtior decay can occur. There are
three possibilities:
- there are n-1 molecules at time t, and production takesptattme dt which gives a contribu-
tion to P(n,t+dt) equal té; dt P(n — 1,t) (we takenp = 1)
- there are n+1 molecules at time t, and decay takes place@dt which gives a contribution
to P(n,t+dt) equal tés dt (n+ 1) P(n+1,t). The factor of (n+1) occurs because the decay can
take place from anyone of (n+1) molecules
- no reaction takes place, the probability of which is givgnt{n, t) multiplied by [1 — k; dt —
ks dtn] , where the latter term is given by the total probability dgoal minus the probability
that one of the two reactions takes place.
By putting these three term together and repla&rﬁl%jt*d;i_w by the derivativé) P (n, t) /Ot,
one obtains the above Master equation (14).

Its steady state solution, which satisfies the equdtionl) P(n+1) = nP(n)+ky /ks[P(n)—
P(n — 1)], can be found recursively, such that

P(1) = ki /ks P(0); P(2) = 1/2(k1/ks)® P(0); P(n) = 1/n!(ky/ks)" P(0)

with P(—1) = 0.

Normalization of this probability function then givé3(0) = exp(—k1/ks), and the expected
form of a Poisson distribution for P(n) (see expression, (@nelP(n) = (i/ka)” exp(Chi/ks),
The steady state distribution 8f thus follows a Poisson distribution, with average steadtest
value equal td:; /k3 (see equation 5), which is precisely the value obtaineatlréom solving
equation (12) of the deterministic system, an example oftineespondence between determin-
istic chemical reaction behavior and that of the populatiearage of a stochastic formulation.
This correspondence becomes clearer still if one muls@ieth sides of equation (14) myand

sums over alh (3° P(n,t) = 1, nP(n,t) =< n(t) >), which leads to

d<n(t) > /dt = ki — ks < n(t) (15)

This equation has the same form as (12): thus the average oadu all cells< n(t) > follows
the same equation as the mMRNA concentration of the detesticigiquation.



5 Master equation for the Thattai-Van Oudenaarden model

The reactions of the model, given in section 3, are

D "M pDim
M2 pmep
M By
P ko

We have already derived the Master equation for the twoimacinvolving M only (see section
4). Here the relevant probability iB(np,nar,t), the probability of having at time t in the
volume considerea p proteinsP andn;; MRNA M. The procedure for deriving the Master
equation satisfied by is the same as that illustrated above (section 4) for the mRiNA-and-
death process. One calculateénp,nyy,t + dt) from knowledge of the state of the system at
time ¢: there are contributions from each reaction, as well as fiteersituation where, during
time dt, the state of the system does not change. The result is:

OP(np,ny,t)/0t = kanpy[P(np — 1,np,t) — P(np,na,t)]
ks[(nay + 1) P(np,ny + 1,t) — npyy P(np,nay, t)]
+ kinp[P(np,ny — 1,t) — P(np,npr,t)]
+ ky[(np+1)P(np+ 1,np,t) —npP(np,np,t)] (16)

This is the Master equation for the Thattai-Van Oudenaardedel (2001). Lines 2 and 3 on
the right-hand side of equation (16) correspond to the tveatiens involvingM but not P
derived previously (see section 4). We will pup = 1 (np is the number of DNA molecules)
from now on. This Master equation is relatively simple, hessathe number of reactions is
small, and reactions are linear in the components. A restiiiedatter is that reaction constants
are simply rates, without any volume dependence. We wittuidis more general cases later
when describing Gillespie’s algorithm. Much can be learalkedut first and second moments by
multiplying both sides of the Master equationy, or n% and similarly forn,,, and summing
over allnp andn,; to obtain< np >, or < n% >, and so on. The angular brackets correspond
to the average over a population of cells.

Using the same approach as in section 4 one obtains the @ugiatitisfied by n,; > and
<np >

d<ny > /dt = —ks<npy >+k a7

d<np>/dt = —ky<np>-+ky<np > (18)
We verify again that these equations for population average similar to the concentration
equations (cf. equations 12 and 13) derived previously. Whestuations around averages are

small, concentrations represent averages over cell piognsadivided by cell volume.
In all cases there are fluctuations embodied in the seconthighdr moments. At steady state
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one finds the following for the Thattai-Van Oudenaarden rhode

o3 =<ni; > — <ny >i=<ny >

op/ <np >*= s [1+ ko / (ks + k)]

The stochastic behavior of mMRNA is Poisson. It correspondbeé "birth-and-death” process
seen before (section 4.). As to protein number fluctuatitimese is an additional term besides
the Poisson term, corresponding to the fact that the numibeRINA, from which protein is
translated, is itself stochastic. Often mMRNA lifetimestfu order of minutes) are much smaller
than protein lifetimes (of the order of hours): thug'ks << 1 and one has simply

oh/ < np > T = b

whereb is the average number of proteins produced in a mRNA lifetiasedefined in section

3.

6 Gillespie’s algorithm (Gillespie, 1977)

Generally biological systems are much more complex thart igh@presented in the Thattai-
Van Oudenaarden model (2001). The number of reactions mgéestell can be in the tens and
larger; many reactions such as dimerization or the bindingnoenzyme to its substrate have
nonlinear components. Though one can in principle writerdtive Master equation, it is too

complicated to be solved by means other than numericalufately there is the straightforward
numerical algorithm developed by Gillespie (1977), whietshowed to be equivalent to solving
the Master equation of a system of chemical reactions in astigled container. The crux of

the algorithm is the drawing of two random numbers at eack ttap, one to determine after
how much time the next reaction will take place, the secoral tonchoose which one of the
reactions will occur.

Suppose there ane = 1,2, .... reactions. We consider reactions with at most two species
(the probability of three species reacting at the same tuemsidered negligible). The quantity
characterizing each reaction is the probabilify(t)dt that given the state of the system at time
t, reactiony will occur in volume V in the time interval (t, t+dt)a,(t) is the product of two
parts: the reaction ratg, for the reactiory, which is related to the chemical rate constants for
that reaction, and the number of possible reactjpirsvolume V. For example, for reaction

P+ P%z (19)

whereZ is the heterodimer formed df, and >, one has
a,(t) = cu P Ps
where the produck,; P, represents the product of the numbersPpfand of P, molecules.
If P isidentical toP;, then
au(t) =c, Pi(Pr—1)/2 (20)

whereP; (P; — 1)/2 is the number of distinct pairs a?; .
Remark: relation betweenc,’s and chemical constantst



By definition thec,’s are rates with dimension of an inverse time. When for argieaction
the chemical constant has the dimension of an inverse tisns,the case of the reactions of the
Thattai-Van Oudenaarden model, theis simply equal to the correspondirig However for
reaction (19), namely

P+ Ptz (21)

for which the chemical rate equation would read
d[Z]/dt = k[P\][P] (22)
the chemical constarit has dimension of volume divided by time. Therefore here
cu=k/V (23)

whereV represents the volume of the region in which the reactioadg#ace.

If P, and P, are the same as in (20) thep = 2k/V.
In cases like these chemical rate constants are expresseeise molars and inverse seconds.
It is useful to note that 1 nM corresponds to 1 particle in anwé of 1.643.

6.1 Implementation of Gillespie’s algorithm (Gillespie, B77)

Suppose the system is known at time t, which means the nunib@plecules of each type
is known, and consequently the quantitiggt) are known for each reaction. Cailh(t) =
> a,(t) the sum of alla,(t). ag(t) dt is the probability of any reaction occurring in (t, t+dt).
Then do the following steps:

1. find the timer aftert¢ at which the next reaction will take place, by drawing a rando
number from an exponential probability density functionrateay ( p(7) = agexp(—ap7)).
The reasoning is the same as in point 3 of section 2.2.

2. choose now at random the reaction which will occur at time. Draw a random number
from a uniform distribution between 0 and 1. If that numbdisfaetween 0 and, /a, reaction
1 is chosen, between /ay and(a; + a2)/ag reaction 2 is chosen and so on.

3. the occurrence of the chosen reaction at tirser changes the numbers for molecules
involved in the reaction, for example for the forward reactof (19)P, — P —1, P, — P,—1,
andZ — Z + 1. Thus the values of the, which depend on any of these numbers change. One
then goes back to point 1 of the algorithmic implementatidih & new distribution of molecules
at timet + 7. The process is reiterated for as long as one wishes to falevevolution of the
system.

Program in MATLAB: tattai.m

Figure 1

We run the Gillespie simulation for the Thattai-Van Oudedaa model with 200 cells, with
the parameter values given in section 3. The results arelrefiywhere a number of quantities
characterizing cell-to-cell variability are shown, in fiemlar the comparison of average protein
number and individual cell behavior for three randomly @rosells in the top left panel. Each
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protein number: average ; 3 single cells, b=2  protein coeff. var., averaged over cells
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Figure 1: Each panel offers a different view of single cetiakility in both transient and steady
state regimes. The graphs correspond to b=2, for whiety >= 104.
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cell starts off from the same initial state, and ends up aftena chosen long enough to reach
steady state, with a different number of proteins, due to internal fluctuations. The average
number is close to the value of 104 calculated for the deterministic system of section 3. The
histogram based on the protein number in each cell at the end of the run (40,000 seconds) shows
a wide distribution between cells with as few as 60 proteins to cells with as many as 150 proteins.
The program, at the end of the run, also prints out the steady state values of the average number
of proteins, Fano factor, and coefficient of variation. One can compare some of these values
with the analytical results at the end of section 3, which give a value of 3 for the Fano factor,
and 0.17 for the coefficient of variation. One should note that the numerical values for average
number of proteins, or Fano factor fluctuate themselves from run to run. The statistical error on
the average is equal tep/+/N., where N, is the number of cells. Here this error is about 1.2.

As one includes more cells into each run, the statistical errors decrease, and one obtains results
for the average number of proteins, for example, closer to the deterministic values. The bottom
panel of Figure 1 shows the mRNA histogram. Whereas the deterministic approach (section 3
and equation (12)) gives a number of mMRNA molecules equal to 1.73, the histogram shows that
that number arises from a distribution over cells with 0,1,2,3,4, or 5 copy numbers. Here the
poulation average gives a poor description of single cell behavior.

7 Efficiency of Gillespie’s algorithm

Gillespie’s algorithm, when implemented in FORTRAN or C, leads to very efficient numerical
computations for systems of several tens of reactions. The exception occurs when some reac-
tions, such as a dimerization reaction, are very fast on the time scales for which the system is
observed, which are typically time scales of the order of the longest time scales of reaction dy-
namics. In this case of some very large rate constant, coupled with a reasonably large number
of molecules, Gillespie’s algorithm spends a large fraction of time selecting for updating that
very fast reaction. The computation then becomes inefficient. (For a discussion of this issue,
remedies and problems, see Bundschuh et al. (2003)).

Several methods have been proposed to accelerate Gillespie’s algorithm for large systems
of reactions, such as the "tau-leap” stochastic algorithm (Gillespie and Petzold, 2003) and the
algorithm of Gibson and Bruck (1999). The first scheme replaces serial updating of the state
of the system through individual reactions by a probabilistic updating of many interactions in
some given time interval (under certain conditions). In the second scheme, where the problem
mentioned above with very fast reactions persists, updating takes place as in the usual Gillespie
algorithm, albeit much more efficiently, A software package, called "Dizzy” (Ramsey et al.,
2005), is available that implements Gillespie’s algorithm and the above algorithmic improve-
ments.
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8. Transcriptional noise and bursting

The noise considered in the previous sections, evaluated in the Thattai-Van Oudenaarden model, is so-
called “small copy number “ noise. It is a consequence of the small numbers of molecules, mRNAs in
particular, with fluctuations (coefficient of variation) typically decreasing as the square root of their
number. There exist other sources of noise, classified usually as either intrinsic or extrinsic. An
example of extrinsic noise would be cell-to-cell variability of some kinase that is activated by a
stimulus and sets in motion a signaling pathway. Other sources of intrinsic noise are transcription or
transcriptional bursting. Both are present in a model of interferon beta induction in single human
dendritic cells infected by a virus (Hu et al., 2007,2009; Iyer-Biswas et al., 2009). The model that
follows is a simplified version. It includes two transcription factors P1 and P2 that bind cooperatively
to create complex Ds11. The latter goes back and forth to a state D* which produces mRNA (M) that
also degrades. The reactions are the following:

D+P1 S Dsl

Ds1+P2 S Dsll1
Dsl1 S D*

D* - D*+M
M~->0

The first two reactions correspond to stochastic transcriptional binding, the last three represent busting
during the time intervals transcription takes place from D*.

A MATLAB program simulates the reactions with Gillespie's algorithm. The simulation runs for 10
hours with 500 cells. Binding starts at 5 hours to mimic the situation where it takes about 5 hours after
cell infection to activate transcription factors. The program produces 4 figures: a histogram of mRNA,
the same histogram on a log-log plot with a linear fit, the exponent of which (printed out) determines
the power law behavior of the distribution when it is long-tailed, the average mRNA as a function of
time, and a histogram of times where each cell reaches the bursting state D* for the first time. The last
figure makes clear that a fraction of the cells (printed out) never reaches induction stage. By changing
forward or backward rates of the conversion of Ds11 to D*, and thus the probability of reaching the
bursting state or the time spent in it, one can explore a range of mRNA distributions.
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